Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 15: 1390419, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38666029

RESUMO

Rosa spp., commonly known as rosehips, are wild plants that have traditionally been employed as herbal remedies for the treatment of a wide range of disorders. Rosehip is a storehouse of vitamins, including A, B complex, C, and E. Among phytonutrients, vitamin C is found in the highest amount. As rosehips contain significant levels of vitamin C, they are perfect candidates for the development of skincare formulations that can be effectively used in the treatment of different skin disorders (i.e., scarring, anti-aging, hyperpigmentation, wrinkles, melasma, and atopic dermatitis). This research focuses on the vitamin C content of several Rosa sp. by their botanical and geographic origins, which according to research studies are in the following order: R. rugosa > R. montana > R. canina > R. dumalis, with lower levels in R. villosa and R. arvensis, respectively. Among rosehip species, R. canina is the most extensively studied species which also displays significant amounts of bioactive compounds, but also antioxidant, and antimicrobial activities (e.g., against Propionibacterium acnes, Staphylococcus aureus, S, epidermis, and S. haemolyticus). The investigation also highlights the use of rosehip extracts and oils to minimise the harmful effects of acne, which primarily affects teenagers in terms of their physical appearance (e.g., scarring, hyperpigmentation, imperfections), as well as their moral character (e.g., low self-confidence, bullying). Additionally, for higher vitamin C content from various rosehip species, the traditional (i.e., infusion, maceration, Soxhlet extraction) and contemporary extraction methods (i.e., supercritical fluid extraction, microwave-assisted, ultrasonic-assisted, and enzyme-assisted extractions) are highlighted, finally choosing the best extraction method for increased bioactive compounds, with emphasis on vitamin C content. Consequently, the current research focuses on assessing the potential of rosehip extracts as medicinal agents against various skin conditions, and the use of rosehip concentrations in skincare formulations (such as toner, serum, lotion, and sunscreen). Up-to-date studies have revealed that rosehip extracts are perfect candidates as topical application products in the form of nanoemulsions. Extensive in vivo studies have revealed that rosehip extracts also exhibit specific activities against multiple skin disorders (i.e., wound healing, collagen synthesis, atopic dermatitis, melasma, and anti-aging effects). Overall, with multiple dermatological actions and efficacies, rosehip extracts and oils are promising agents that require a thorough investigation of their functioning processes to enable their safe use in the skincare industry.

2.
Plants (Basel) ; 11(14)2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35890501

RESUMO

Cyclamen genus is part of the Primulaceae family consisting of 24 species widely cultivated as ornamental and medicinal plants. They also possess high plasticity in terms of adaptability to alternating environmental conditions. In this regard, the present study investigates the germination and morphological parameters of heat-tolerant and heat-sensitive Cyclamen persicum accessions in the presence of different GA3 solutions (0, 30, 70 and 90 mg/L) under ambient temperature and heat stress conditions. Heat-tolerant genotypes, mainly C3-Smartiz Victoria (6.42%), C15-Merengue magenta (6.47%) and C16-Metis silverleaf (5.12%) had the highest germination rate with 90 mg/L GA3 treatment compared with control. Regarding heat-sensitive genotypes, C11-Verano (5.11%) and C13-Metis Origami (4.28%) had the lowest values in mean germination time, along with the Petticoat genotypes C1 (73.3%) and C2 (80.0%) with a high germination percentage. Heat-tolerant genotypes positively responded to GA3 (70 and 90 mg/L) even under heat stress conditions, by their higher values in plant height, an ascending trend also seen in heat-sensitive genotypes under GA3 treatment (70 and 90 mg/L). According to the hierarchical clustering, several heat-tolerant genotypes showed peculiar behavior under heat stress conditions, namely C3 (Smartiz Victoria), C7 (Halios falbala) and C8 (Latinia pipoca) which proved to be susceptible to heat stress even under GA3 application, compared with the other genotypes which showed tolerance to higher temperatures. In the case of heat-sensitive genotypes, C4 (Smartiz violet fonce), C6 (Metis blank pur), C11 (Verano) and C13 (Metis origami) possessed higher positive or negative values compared with the other heat-sensitive genotypes with increased doses of GA3. These genotypes were shown to be less affected by heat stress, suggesting their positive response to hormone treatment. In conclusion, the above-mentioned genotypes, particularly heat-tolerant C15 and heat-sensitive C2 with the highest germination capacity and development can be selected as heat-resistant genotypes to be deposited in gene banks and used in further amelioration programs under biotic and/or abiotic stresses to develop resistant genotypes.

3.
Virology ; 355(1): 52-61, 2006 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-16908044

RESUMO

Viral determinants for overcoming Pisum sativum recessive resistance, sbm-2, against the potyvirus Pea seed-borne mosaic virus (PSbMV) were identified in the region encoding the N-terminal part of the P3 protein. Codons conserved between sbm-2 virulent isolates in this region: Q21, K30 and H122 were found to specifically impair sbm-2 virulence when mutated in selected genetic backgrounds. The corresponding amino acids, Gln21 and Lys30, are neighbored by P3 residues strongly conserved among potyviruses and His122 is conserved particularly in potyviral species infecting legumes. The strongest selective inhibition of sbm-2 virulence, however, was observed by elimination of isolate specific length polymorphisms also located in the N-terminal part of the P3 protein. Length variation in N-terminal P3 is common between potyviral species. However, intra-species length polymorphism in this region was found only among PSbMV isolates. Our findings comply with a model for PSbMV pathotypes having evolved by a diversification of the P3 protein likely to extend to the level of function.


Assuntos
Pisum sativum/virologia , Doenças das Plantas/virologia , Potyvirus/patogenicidade , Proteínas Virais/fisiologia , Virulência/genética , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Códon/genética , Sequência Conservada , Imunidade Inata , Dados de Sequência Molecular , Mutação , Polimorfismo Genético , Potyvirus/genética , Deleção de Sequência , Homologia de Sequência de Aminoácidos , Proteínas Virais/química , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...